Anonymous user / Log In Register
Wallet: 3.00
Daily Credits:
1.20 / 1.20


An integer is a number of the set ℤ = {..., -2, -1, 0, 1, 2, ...}.

See also:


Integers can be specified in decimal (base 10), hexadecimal (base 16), octal (base 8) or binary (base 2) notation, optionally preceded by a sign (- or +).

Binary integer literals are available since PHP 5.4.0.

To use octal notation, precede the number with a 0 (zero). To use hexadecimal notation precede the number with 0x. To use binary notation precede the number with 0b.

Example #1 Integer literals

1234// decimal number
$a = -123// a negative number
$a 0123// octal number (equivalent to 83 decimal)
$a 0x1A// hexadecimal number (equivalent to 26 decimal)

Formally, the structure for integer literals is:

decimal     : [1-9][0-9]*
            | 0

hexadecimal : 0[xX][0-9a-fA-F]+

octal       : 0[0-7]+

binary      : 0b[01]+

integer     : [+-]?decimal
            | [+-]?hexadecimal
            | [+-]?octal
            | [+-]?binary

The size of an integer is platform-dependent, although a maximum value of about two billion is the usual value (that's 32 bits signed). 64-bit platforms usually have a maximum value of about 9E18. PHP does not support unsigned integers. Integer size can be determined using the constant PHP_INT_SIZE, and maximum value using the constant PHP_INT_MAX since PHP 4.4.0 and PHP 5.0.5.


If an invalid digit is given in an octal integer (i.e. 8 or 9), the rest of the number is ignored.

Example #2 Octal weirdness

(01090); // 010 octal = 8 decimal

Integer overflow

If PHP encounters a number beyond the bounds of the integer type, it will be interpreted as a float instead. Also, an operation which results in a number beyond the bounds of the integer type will return a float instead.

Example #3 Integer overflow on a 32-bit system

var_dump($large_number);                     // int(2147483647)

$large_number 2147483648;
var_dump($large_number);                     // float(2147483648)

$million 1000000;
$large_number =  50000 $million;
var_dump($large_number);                     // float(50000000000)

Example #4 Integer overflow on a 64-bit system

var_dump($large_number);                     // int(9223372036854775807)

$large_number 9223372036854775808;
var_dump($large_number);                     // float(9.2233720368548E+18)

$million 1000000;
$large_number =  50000000000000 $million;
var_dump($large_number);                     // float(5.0E+19)

There is no integer division operator in PHP. 1/2 yields the float 0.5. The value can be casted to an integer to round it downwards, or the round() function provides finer control over rounding.

(25/7);         // float(3.5714285714286) 
var_dump((int) (25/7)); // int(3)
var_dump(round(25/7));  // float(4) 

Converting to integer

To explicitly convert a value to integer, use either the (int) or (integer) casts. However, in most cases the cast is not needed, since a value will be automatically converted if an operator, function or control structure requires an integer argument. A value can also be converted to integer with the intval() function.

See also: type-juggling.

From booleans

FALSE will yield 0 (zero), and TRUE will yield 1 (one).

From floating point numbers

When converting from float to integer, the number will be rounded towards zero.

If the float is beyond the boundaries of integer (usually +/- 2.15e+9 = 2^31 on 32-bit platforms and +/- 9.22e+18 = 2^63 on 64-bit platforms), the result is undefined, since the float doesn't have enough precision to give an exact integer result. No warning, not even a notice will be issued when this happens!


Never cast an unknown fraction to integer, as this can sometimes lead to unexpected results.

echo (int) ( (0.1+0.7) * 10 ); // echoes 7!

See also the warning about float precision.

From strings

See String conversion to numbers

From other types


The behaviour of converting to integer is undefined for other types. Do not rely on any observed behaviour, as it can change without notice.